Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Cell Sci ; 135(9)2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-35319067

RESUMEN

Stress response pathways protect the lung from the damaging effects of environmental toxicants. Here we investigate the role of the fragile X mental retardation protein (FMRP), a multifunctional protein implicated in stress responses, in the lung. We report that FMRP is expressed in murine and human lungs, in the airways and more broadly. Analysis of airway stress responses in mice and in a murine cell line ex vivo, using the well-established naphthalene injury model, reveals that FMRP-deficient cells exhibit increased expression of markers of oxidative and genotoxic stress and increased cell death. Further inquiry shows that FMRP-deficient cells fail to actuate the integrated stress response pathway (ISR) and upregulate the transcription factor ATF4. Knockdown of ATF4 expression phenocopies the loss of FMRP. We extend our analysis of the role of FMRP to human bronchial BEAS-2B cells, using a 9,10-phenanthrenequinone air pollutant model, to find that FMRP-deficient BEAS-2B cells also fail to actuate the ISR and exhibit greater susceptibility. Taken together, our data suggest that FMRP has a conserved role in protecting the airways by facilitating the ISR. This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil , Xenobióticos , Animales , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Regulación de la Expresión Génica , Humanos , Pulmón/metabolismo , Ratones , Factores de Transcripción/metabolismo
2.
Elife ; 102021 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-34622778

RESUMEN

Progenitors of the thoracic tracheal system of adult Drosophila (tracheoblasts) arrest in G2 during larval life and rekindle a mitotic program subsequently. G2 arrest is dependent on ataxia telangiectasia mutated and rad3-related kinase (ATR)-dependent phosphorylation of checkpoint kinase 1 (Chk1) that is actuated in the absence of detectable DNA damage. We are interested in the mechanisms that activate ATR/Chk1 (Kizhedathu et al., 2018; Kizhedathu et al., 2020). Here we report that levels of reactive oxygen species (ROS) are high in arrested tracheoblasts and decrease upon mitotic re-entry. High ROS is dependent on expression of Duox, an H2O2 generating dual oxidase. ROS quenching by overexpression of superoxide dismutase 1, or by knockdown of Duox, abolishes Chk1 phosphorylation and results in precocious proliferation. Tracheae deficient in Duox, or deficient in both Duox and regulators of DNA damage-dependent ATR/Chk1 activation (ATRIP/TOPBP1/claspin), can induce phosphorylation of Chk1 in response to micromolar concentrations of H2O2 in minutes. The findings presented reveal that H2O2 activates ATR/Chk1 in tracheoblasts by a non-canonical, potentially direct, mechanism.


Asunto(s)
Proteínas de Ciclo Celular/genética , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/fisiología , Oxidasas Duales/genética , Puntos de Control de la Fase G2 del Ciclo Celular/genética , Proteínas Serina-Treonina Quinasas/genética , Especies Reactivas de Oxígeno/metabolismo , Animales , Proteínas de Ciclo Celular/metabolismo , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/metabolismo , Proteínas de Drosophila/metabolismo , Oxidasas Duales/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo
3.
PLoS Pathog ; 17(7): e1009706, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34252168

RESUMEN

Many viruses utilize the host endo-lysosomal network for infection. Tracing the endocytic itinerary of SARS-CoV-2 can provide insights into viral trafficking and aid in designing new therapeutic strategies. Here, we demonstrate that the receptor binding domain (RBD) of SARS-CoV-2 spike protein is internalized via the pH-dependent CLIC/GEEC (CG) endocytic pathway in human gastric-adenocarcinoma (AGS) cells expressing undetectable levels of ACE2. Ectopic expression of ACE2 (AGS-ACE2) results in RBD traffic via both CG and clathrin-mediated endocytosis. Endosomal acidification inhibitors like BafilomycinA1 and NH4Cl, which inhibit the CG pathway, reduce the uptake of RBD and impede Spike-pseudoviral infection in both AGS and AGS-ACE2 cells. The inhibition by BafilomycinA1 was found to be distinct from Chloroquine which neither affects RBD uptake nor alters endosomal pH, yet attenuates Spike-pseudovirus entry. By screening a subset of FDA-approved inhibitors for functionality similar to BafilomycinA1, we identified Niclosamide as a SARS-CoV-2 entry inhibitor. Further validation using a clinical isolate of SARS-CoV-2 in AGS-ACE2 and Vero cells confirmed its antiviral effect. We propose that Niclosamide, and other drugs which neutralize endosomal pH as well as inhibit the endocytic uptake, could provide broader applicability in subverting infection of viruses entering host cells via a pH-dependent endocytic pathway.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , COVID-19/virología , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/patogenicidad , Internalización del Virus/efectos de los fármacos , Cloruro de Amonio/farmacología , Enzima Convertidora de Angiotensina 2/genética , Enzima Convertidora de Angiotensina 2/fisiología , Animales , Antivirales/administración & dosificación , Antivirales/farmacología , Línea Celular , Chlorocebus aethiops , Cloroquina/farmacología , Clatrina/metabolismo , Sinergismo Farmacológico , Endocitosis/efectos de los fármacos , Endocitosis/fisiología , Endosomas/efectos de los fármacos , Endosomas/metabolismo , Humanos , Concentración de Iones de Hidrógeno/efectos de los fármacos , Hidroxicloroquina/administración & dosificación , Macrólidos/farmacología , Niclosamida/administración & dosificación , Niclosamida/farmacología , Unión Proteica/efectos de los fármacos , Dominios Proteicos , SARS-CoV-2/fisiología , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/fisiología , Células Vero
4.
Elife ; 92020 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-32876044

RESUMEN

Larval tracheae of Drosophila harbour progenitors of the adult tracheal system (tracheoblasts). Thoracic tracheoblasts are arrested in the G2 phase of the cell cycle in an ATR (mei-41)-Checkpoint Kinase1 (grapes, Chk1) dependent manner prior to mitotic re-entry. Here we investigate developmental regulation of Chk1 activation. We report that Wnt signaling is high in tracheoblasts and this is necessary for high levels of activated (phosphorylated) Chk1. We find that canonical Wnt signaling facilitates this by transcriptional upregulation of Chk1 expression in cells that have ATR kinase activity. Wnt signaling is dependent on four Wnts (Wg, Wnt5, 6,10) that are expressed at high levels in arrested tracheoblasts and are downregulated at mitotic re-entry. Interestingly, none of the Wnts are dispensable and act synergistically to induce Chk1. Finally, we show that downregulation of Wnt signaling and Chk1 expression leads to mitotic re-entry and the concomitant upregulation of Dpp signaling, driving tracheoblast proliferation.


Asunto(s)
Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , Proteínas de Drosophila , Fase G2/genética , Tráquea , Vía de Señalización Wnt/genética , Animales , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/genética , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/metabolismo , Drosophila/citología , Drosophila/embriología , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Tráquea/citología , Tráquea/embriología , Proteínas Wnt/genética , Proteínas Wnt/metabolismo
5.
Elife ; 72018 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-29658881

RESUMEN

Imaginal progenitors in Drosophila are known to arrest in G2 during larval stages and proliferate thereafter. Here we investigate the mechanism and implications of G2 arrest in progenitors of the adult thoracic tracheal epithelium (tracheoblasts). We report that tracheoblasts pause in G2 for ~48-56 h and grow in size over this period. Surprisingly, tracheoblasts arrested in G2 express drivers of G2-M like Cdc25/String (Stg). We find that mechanisms that prevent G2-M are also in place in this interval. Tracheoblasts activate Checkpoint Kinase 1/Grapes (Chk1/Grp) in an ATR/mei-41-dependent manner. Loss of ATR/Chk1 led to precocious mitotic entry ~24-32 h earlier. These divisions were apparently normal as there was no evidence of increased DNA damage or cell death. However, induction of precocious mitoses impaired growth of tracheoblasts and the tracheae they comprise. We propose that ATR/Chk1 negatively regulate G2-M in developing tracheoblasts and that G2 arrest facilitates cellular and hypertrophic organ growth.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/metabolismo , Proteínas de Drosophila/metabolismo , Puntos de Control de la Fase G2 del Ciclo Celular , Hipertrofia , Metamorfosis Biológica , Proteínas Serina-Treonina Quinasas/metabolismo , Células Madre/fisiología , Tráquea/crecimiento & desarrollo , Animales , Drosophila
6.
Cell Rep ; 19(2): 246-254, 2017 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-28402849

RESUMEN

There is evidence that certain club cells (CCs) in the murine airways associated with neuroepithelial bodies (NEBs) and terminal bronchioles are resistant to the xenobiotic naphthalene (Nap) and repopulate the airways after Nap injury. The identity and significance of these progenitors (variant CCs, v-CCs) have remained elusive. A recent screen for CC markers identified rare Uroplakin3a (Upk3a)-expressing cells (U-CCs) with a v-CC-like distribution. Here, we employ lineage analysis in the uninjured and chemically injured lungs to investigate the role of U-CCs as epithelial progenitors. U-CCs proliferate and generate CCs and ciliated cells in uninjured airways long-term and, like v-CCs, after Nap. U-CCs have a higher propensity to generate ciliated cells than non-U-CCs. Although U-CCs do not contribute to alveolar maintenance long-term, they generate alveolar type I and type II cells after Bleomycin (Bleo)-induced alveolar injury. Finally, we report that Upk3a+ cells exist in the NEB microenvironment of the human lung and are aberrantly expanded in conditions associated with neuroendocrine hyperplasias.


Asunto(s)
Bronquiolos/metabolismo , Microambiente Celular/genética , Células Madre/metabolismo , Uroplaquina III/biosíntesis , Animales , Bleomicina/toxicidad , Bronquiolos/efectos de los fármacos , Bronquiolos/lesiones , Linaje de la Célula/efectos de los fármacos , Microambiente Celular/efectos de los fármacos , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Células Epiteliales/patología , Humanos , Ratones , Naftalenos/toxicidad , Cuerpos Neuroepiteliales/metabolismo , Cuerpos Neuroepiteliales/patología , Alveolos Pulmonares/lesiones , Células Madre/efectos de los fármacos , Uroplaquina III/genética , Cicatrización de Heridas
7.
Elife ; 42015 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-26491942

RESUMEN

The Drosophila tracheal system is a branched tubular network that forms in the embryo by a post-mitotic program of morphogenesis. In third instar larvae (L3), cells constituting the second tracheal metamere (Tr2) reenter the cell cycle. Clonal analysis of L3 Tr2 revealed that dividing cells in the dorsal trunk, dorsal branch and transverse connective branches respect lineage restriction boundaries near branch junctions. These boundaries corresponded to domains of gene expression, for example where cells expressing Spalt, Delta and Serrate in the dorsal trunk meet vein-expressing cells in the dorsal branch or transverse connective. Notch signaling was activated to one side of these borders and was required for the identity, specializations and segregation of border cells. These findings suggest that Tr2 is comprised of developmental compartments and that developmental compartments are an organizational feature relevant to branched tubular networks.


Asunto(s)
Drosophila/embriología , Animales , Regulación del Desarrollo de la Expresión Génica , Larva/crecimiento & desarrollo , Tráquea/embriología
8.
BMC Pulm Med ; 15: 72, 2015 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-26178733

RESUMEN

BACKGROUND: Secretoglobin (SCGB) 3A2, a cytokine-like secretory protein of small molecular weight, is predominantly expressed in airway epithelial cells. While SCGB3A2 is known to have anti-inflammatory, growth factor, and anti-fibrotic activities, whether SCGB3A2 has any other roles, particularly in lung homeostasis and disease has not been demonstrated in vivo. The aim of this study was to address these questions in mice. METHODS: A transgenic mouse line that expresses SCGB3A2 in the lung using the human surfactant protein-C promoter was established. Detailed histological, immunohistochemical, physiological, and molecular characterization of the Scgb3a2-transgenic mouse lungs were carried out. Scgb3a2-transgenic and wild-type mice were subjected to bleomycin-induced pulmonary fibrosis model, and their lungs and bronchoalveolar lavage fluids were collected at various time points during 9 weeks post-bleomycin treatment for further analysis. RESULTS: Adult Scgb3a2-transgenic mouse lungs expressed approximately five-fold higher levels of SCGB3A2 protein in comparison to wild-type mice as determined by western blotting of lung tissues. Immunohistochemistry showed that expression was localized to alveolar type II cells in addition to airway epithelial cells, thus accurately reflecting the site of surfactant protein-C expression. Scgb3a2-transgenic mice showed normal lung development and histology, and no overt gross phenotypes. However, when subjected to a bleomycin-induced pulmonary fibrosis model, they initially exhibited exacerbated fibrosis at 3 weeks post-bleomycin administration that was more rapidly resolved by 6 weeks as compared with wild-type mice, as determined by lung histology, Masson Trichrome staining and hydroxyproline content, inflammatory cell numbers, expression of collagen genes, and proinflammatory cytokine levels. The decrease of fibrosis coincided with the increased expression of SCGB3A2 in Scgb3a2-transgenic lungs. CONCLUSIONS: These results demonstrate that SCGB3A2 is an anti-fibrotic agent, and suggest a possible therapeutic use of recombinant SCGB3A2 in the treatment of pulmonary fibrosis.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Pulmón/metabolismo , Fibrosis Pulmonar/genética , ARN/genética , Secretoglobinas/genética , Animales , Bleomicina/toxicidad , Northern Blotting , Western Blotting , Ensayo de Inmunoadsorción Enzimática , Inmunohistoquímica , Pulmón/patología , Ratones , Ratones Transgénicos , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Secretoglobinas/biosíntesis
9.
PLoS One ; 9(2): e88848, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24586412

RESUMEN

Clara cells (CCs) are a morphologically and operationally heterogeneous population of Secretoglobin Scgb1a1-expressing secretory cells that are crucial for airway homeostasis and post-injury repair. Analysis of the extent and origin of CC diversity are limited by knowledge of genes expressed in these cells and their precursors. To identify novel putative markers of CCs and explore the origins of CC diversity, we characterized global changes in gene expression in embryonic lungs in which CCs do not form due to conditional disruption of Notch signaling (Rbpjk(CNULL)). Microarray profiling, Real Time PCR (qRT-PCR), and RNA in situ hybridization (ISH) identified eleven genes downregulated in the E18.5 airways of Rbpjk(cnull) compared to controls, nearly half not previously known to mark CCs. ISH revealed that several genes had overlapping but distinct domains of expression of in the normal developing lung (E18.5). Notably, Reg3g, Chad, Gabrp and Lrrc26 were enriched in proximal airways, Hp in the distal airways and Upk3a in clusters of cells surrounding Neuroepithelial Bodies (NEBs). Seven of the eleven genes, including Reg3g, Hp, and Upk3a, were expressed in the adult lung in CCs in a pattern similar to that observed in the developing airways. qRT-PCR-based analysis of gene expression of CCs isolated from different airway regions of B1-EGFP reporter mice corroborated the spatial enrichment in gene expression observed by ISH. Our study identifies candidate markers for CC-precursors and CCs and supports the idea that the diversification of the CC phenotype occurs already during embryonic development.


Asunto(s)
Células Epiteliales/metabolismo , Regulación de la Expresión Génica/fisiología , Pulmón/embriología , Pulmón/metabolismo , Receptores Notch/metabolismo , Transducción de Señal/fisiología , Animales , Biomarcadores/metabolismo , Células Epiteliales/citología , Citometría de Flujo , Perfilación de la Expresión Génica , Hibridación in Situ , Ratones , Análisis por Micromatrices , Reacción en Cadena en Tiempo Real de la Polimerasa
10.
Proc Natl Acad Sci U S A ; 109(31): 12592-7, 2012 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-22797898

RESUMEN

Clara cells of mammalian airways have multiple functions and are morphologically heterogeneous. Although Notch signaling is essential for the development of these cells, it is unclear how Notch influences Clara cell specification and if diversity is established among Clara cell precursors. Here we identify expression of the secretoglobin Scgb3a2 and Notch activation as early events in a program of secretory cell fate determination in developing murine airways. We show that Scgb3a2 expression in vivo is Notch-dependent at early stages and ectopically induced by constitutive Notch1 activation, and also that in vitro Notch signaling together with the pan-airway transcription factor Ttf1 (Nkx2.1) synergistically regulate secretoglobin gene transcription. Furthermore, we identified a subpopulation of secretory precursors juxtaposed to presumptive neuroepithelial bodies (NEBs), distinguished by their strong Scgb3a2 and uroplakin 3a (Upk3a) signals and reduced Ccsp (Scgb1a1) expression. Genetic ablation of Ascl1 prevented NEB formation and selectively interfered with the formation of this subpopulation of cells. Lineage labeling of Upk3a-expressing cells during development showed that these cells remain largely uncommitted during embryonic development and contribute to Clara and ciliated cells in the adult lung. Together, our findings suggest a role for Notch in the induction of a Clara cell-specific program of gene expression, and reveals that the NEB microenvironment in the developing airways is a niche for a distinct subset of Clara-like precursors.


Asunto(s)
Cuerpos Neuroepiteliales/metabolismo , Sistema Respiratorio/embriología , Nicho de Células Madre/fisiología , Células Madre/metabolismo , Animales , Femenino , Regulación del Desarrollo de la Expresión Génica/fisiología , Ratones , Ratones Noqueados , Cuerpos Neuroepiteliales/citología , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Receptores Notch/genética , Receptores Notch/metabolismo , Sistema Respiratorio/citología , Secretoglobinas/biosíntesis , Secretoglobinas/genética , Células Madre/citología , Factor Nuclear Tiroideo 1 , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
11.
Dev Biol ; 335(2): 317-26, 2009 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-19751719

RESUMEN

The Drosophila Dorsal Air Sac Primordium (ASP) is a tracheal tube that grows toward Branchless FGF-expressing cells in the wing imaginal disc. We show that the ASP arises from a tracheal branch that invades the basal lamina of the disc to juxtapose directly with disc cells. We examined the role of matrix metalloproteases (Mmps), and found that reducing Mmp2 activity perturbed disc-trachea association, altered peritracheal distributions of collagen IV and Perlecan, misregulated ASP growth, and abrogated development of the dorsal air sacs. Whereas the function of the membrane-tethered Mmp2 in the ASP is non-cell autonomous we find that it may have distinct tissue-specific roles in the ASP and disc. These findings demonstrate a critical role for Mmp2 in tubulogenesis post-induction, and implicate Mmp2 in regulating dynamic and essential changes to the extracellular matrix.


Asunto(s)
Sacos Aéreos/embriología , Drosophila/enzimología , Metaloproteinasa 2 de la Matriz/metabolismo , Tráquea/embriología , Alas de Animales/embriología , Animales , Drosophila/embriología , Factores de Crecimiento de Fibroblastos/metabolismo , Microscopía Electrónica , Transducción de Señal
12.
Proc Natl Acad Sci U S A ; 105(31): 10832-6, 2008 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-18664581

RESUMEN

For many organs, the processes of renewal and regeneration recruit stem cells to replace differentiated, postmitotic cells, but the capacity of an organ's differentiated cells to divide and contribute is uncertain. Most cells of the Drosophila adult are the descendants of dedicated precursors that divide and replace larval cells that are histolyzed during metamorphosis. We investigated the provenance of cells that reconstitute the second thoracic metamere of the tracheal system (Tr2). These cells contribute the precursors for Branchless(FGF)-dependent growth of the dorsal air sacs, the major tracheal organs of the adult fly. We found that, in contrast to the cells in other tracheal metameres that proceed through many cycles of endoreplication, the cells that constitute the Tr2 branches in young larvae do not. Like the cells in other tracheal metameres, these cells arrest mitotic cycling in the embryo and form differentiated, air-filled tracheal branches of the larva. We report here that they reinitiate cell divisions during the third instar (L3) to increase the Tr2 population by approximately 10-fold with multipotent cells.


Asunto(s)
Diferenciación Celular/fisiología , División Celular/fisiología , Drosophila/crecimiento & desarrollo , Regeneración/fisiología , Sistema Respiratorio/citología , Animales , Apoptosis/fisiología , Etiquetado Corte-Fin in Situ , Sistema Respiratorio/crecimiento & desarrollo
13.
Curr Opin Genet Dev ; 17(4): 264-71, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17643982

RESUMEN

Protein morphogens are instructive signals that regulate growth and patterning of tissues and organs. They form long-range, dynamic gradients by moving from regions of high concentration (producing cells) to regions of low concentration (the adjacent, nonproducing developmental field). Since morphogen activity must be limited to the adjacent target field, we want to understand both how signaling proteins move and how their dispersion is restricted. We consider the variety of settings for long-range morphogen systems in Drosophila. In the early embryo, morphogens appear to disperse by free diffusion, and impermeable membranes physically constrain them. However, at later stages, containment is achieved without physical barriers. We argue that in the absence of constraining barriers, gradient-generating dispersion of morphogens cannot be achieved by passive diffusion and that other mechanisms for distribution must be considered.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Transducción de Señal , Animales , Tipificación del Cuerpo , Drosophila/embriología , Proteínas de Drosophila/genética , Embrión no Mamífero/embriología , Embrión no Mamífero/metabolismo , Regulación del Desarrollo de la Expresión Génica , Modelos Biológicos , Alas de Animales/embriología , Alas de Animales/metabolismo
14.
Dev Biol ; 287(1): 192-200, 2005 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-16198330

RESUMEN

The dorsal air sacs supply oxygen to the flight muscles of the Drosophila adult. This tracheal organ grows from an epithelial tube (the air sac primordium (ASP)) that arises during the third larval instar (L3) from a wing-disc-associated tracheal branch. Since the ASP is generated by a program of both morphogenesis and cell proliferation and since the larval tracheal branches are populated by cells that are terminally differentiated, the provenance of its progenitors has been uncertain. Here, we show that, although other larval tracheae are remodeled after L3, most tracheal branches in the tracheal metamere associated with the wing disc (Tr2) are precociously repopulated with imaginal tracheoblasts during L3. Concurrently, the larval cells in Tr2 undergo head involution defective (hid)-dependent programmed cell death. In BX-C mutant larvae, the tracheal branches of the Tr3 metamere are also repopulated during L3. Our results show that repopulation of the larval trachea is a prerequisite for FGF-dependent induction of cell proliferation and tubulogenesis in the ASP and that homeotic selector gene function is necessary for the temporal and spatial control of tracheal repopulation.


Asunto(s)
Drosophila melanogaster/embriología , Inducción Embrionaria/fisiología , Sistema Respiratorio/embriología , Animales , Apoptosis/fisiología , Proliferación Celular , Proteínas de Drosophila/fisiología , Drosophila melanogaster/crecimiento & desarrollo , Factores de Crecimiento de Fibroblastos/fisiología , Larva/crecimiento & desarrollo , Neuropéptidos/fisiología , Sistema Respiratorio/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...